Statistical Methods in Paleontology: Examples from Upper Cretaceous Continental Mollusks

Marron Bingle-Davis
University of North Dakota
and
Sunshine Valley Petroleum Corporation
Introduction

Statistics provide a quantitative foundation to qualitative observations

- Defining taxonomy
- Analyzing species change and spatial relationships

There is no way to know which test provides the most accurate results, so choose the test that best fits your question

- Discriminant Analysis
- Cluster Analysis
- Analysis of Variance
- Chi² Tests
Hell Creek Formation Type Area: Western Williston Basin

Study Area
Typical Study Area Section

HC = Hell Creek Formation
FH = Fox Hills Formation
B = Bearpaw Shale

Image from Hartman and Bingle (2003)
DI = Dakota Isthmus

Paleogeography

Hell Creek Type Area

Western Interior Seaway

(Modified from Erickson, 1999; Hartman and Bingle, 2003)
Whitfield first described these species (1903, 1907) and placed them all into the genus *Unio*.

Russell (1976) reevaluated the descriptions and placed the species into more specialized modern and fossil genera.
The Unionoids

Plethobasus

Traditionally, these species are distinguished by the presence of one or two rows of nodular sculpture curving posteroventrally from the umbo.
The elongate forms of this genus are traditionally distinguished by a distinct posterior marginal shape.

The short forms of this genus were also originally distinguished by a different posterior marginal shape.
The Unionoids

Proparreysia

Proparreysia verrucosiformis

Proparreysia letsoni

These species were traditionally distinguished on the basis of either a linear or random node pattern.
Bivalve Character Traits

- **Maximum Length (mm)**
 - S4526 *Plesielliptio postbiplicatus*

- **Maximum Height (mm)**
 - 10 mm

- **Shell Convexity (mm)**
 - 10 mm

- **Outline Shape**
 - Orbicular
 - Ovate
 - Ovate Trigonal
 - Ovate Elliptical
 - Elongate Elliptical

- **Anterior Margin Shape**
 - 0 = Slight curvature
 - 1 = Moderate curvature
 - 2 = Strong curvature

- **Tooth Width**
 - S4526 *Plesielliptio postbiplicatus*

- **Tooth Orientation**
 - Orthogonal
 - Oblique Anterior
 - Curved Anterior
 - Oblique Posterior
 - Curved Posterior
Tests the separation of two groups
- Null hypothesis = The groups are the same
- Mahalanobis distance (D^2) = The multivariate distance between the means of each group
 - The greater the distance, the more distinct the groups
- Null hypothesis is rejected when $F_{calc} > F_{table}$
- Accomplished using two programs, DISCRIM and PAST
- This study attempts to discriminate closely related sister species as valid
Both programs determined that these species were distinct on the basis of size parameters.

DISCRIM: $F_{18,24} = 15.8^*$

Although PAST resulted in a significant separation based on shape parameters, DISCRIM did not.

DISCRIM: $F_{14,17} = 0.641$

* Significant at $\alpha = 0.05$
Plesielliptio gibbosoides and **Plesielliptio whitfieldi**

Both programs determined that these species were distinct on the basis of size parameters.

DISCRIM: $F_{15, 24} = 1447.8^*$

Neither program produced a significant separation based on shape.

DISCRIM: $F_{15, 24} = 0.66$

* Significant at $\alpha = 0.05$
Plesielliptio postbiplicatus and Plesielliptio brachyopisthus

Although DISCRIM showed significant separation, PAST did not classify all specimens into the correct species.

DISCRIM: $F_{15,47} = 275.73^*$

Neither program produced a significant separation based on shape.

DISCRIM: $F_{14,53} = 1.87$

* Significant at $\alpha = 0.05$
Proparreysia letsoni and Proparreysia verrucosiformis

Both programs determined that these species were distinct on the basis of size parameters.

DISCRIM: $F_{16,37} = 78.02^*$

Contrary to the other species sets, both programs produced a significant separation based on shape parameters, which is mostly due to the shape of the posteroventral sculpture.

DISCRIM: $F_{14,34} = 3.17^*$

* Significant at $\alpha = 0.05$
The Deccan Traps

- ~1.5 million km³ volume & ≥ 500,000 km² area (est originally 10 million km³ & 10 million km²)
- 10–60 m thick; Flows thicker to west
- ≤ 15 flows; variable
- Uppermost Cretaceous-Paleocene
- ~6 Ma (debated) of volcanism with largest pulse at ~67 Ma
Paleogeography of India at ~ 65 Ma

During this time India was moving at ~18-19.5 cm/yr

Source of Volcanism – Breakup of India and Seychelles
Current Interpretation

- Mostly lacustrine clay, silt, and carbonate
- Channel deposits rare
- Sediments often converted to chert
- Infra- and Intertrappean beds are often thin and discontinuous
- Sequence rests on Gondwanan units or Precambrian rocks
- Traps can be amygdaloidal or nodular
Previous Studies: James Sowerby (1840) and Stephen Hislop (1860)
Continental and a few brackish infra- and intertrappean molluscan localities, central India.

(geology – GSI, 1998, 1:2,000,000) (base – Gizi Map, 1:3,000,000)
Int 3: Sindhi
Int 3: Butera
Int 2: Kalmeshwar
Int 1: Takli
Inf: Pijdura

Sindhi

from Wilson, 2010
Fossils are mostly steinkerns found as float – Infratrappean is red claystone with some sandstone lenses

from Wilson, 2010
Fossils are steinkerns and original shell; microsnails dominant – Intertrappean is green claystone.
Fossils are mostly steinkerns; microsnails dominant - Intertrappean is light colored siltstone and brown claystone
Fossils are mostly steinkerns; micro- and macrosnails - Intertrappean is light colored siltstone and chert.
Fossils are steinkern cross-sections; microsnails dominant—Intertrappean is black colored chert

from Samant and Mohabey, 2009
Gastropod Character Traits

Quantitative

- Basic Shell Parameters
- Number of Whorls
- Aperture Angle

Qualitative

- Suture Depression
- Umbilicus Type
- Sculpture

- Slight
- Some
- Regular
- Strong

- Open Umbilicus
- Closed Umbilicus

- Revolving Sculpture
Cluster Analysis

- Groups observations into the most homogeneous and distinct clusters
 - Based on overall similarities in the characteristics of the members
- Displayed as dendrogram
 - Shorter the arms, the greater the similarity
- Correlation coefficient (R) calculated to show strength of results (goodness of fit)
 - Between 0 and 1; R = 0.8 considered very good fit
- Uses hierarchical clustering = most similar observations clustered first
- Accomplished using StatistiXL for Microsoft Excel
- This study attempts to identify morphotypes (species) based on grouping patterns
16 Morphotypes

R = 0.71
Viviparidae
- *Bellamya lattooformis* (vivA)
- *Bellamya normalis* (vivB)

Pomatiopsidae
- *Tricula virapai* (hydA)
- *Tricula hislopi conoidea* (hydB1)
- *Tricula hislopi takliensis* (hydB2)
- *Tricula sankeyi* (hydC)

Thiaridae
- *Thiara quadrilineata* (hydD)
Valvatidae
Valvata multicarinata (valA)
Valvata unicarinifera chiknaformis (valB1)
Valvata unicarinifera golata (valB2)

Subulinidae
Paleozootecus burji (styA)
Subulina subcylindracea (styB)
Subulina pyramis (styC)
Lymnaeidae
Lymnaea oviformis (lymA)
Lymnaea pokhariensis (lymB)
Lymnaea subulata (lymC)

Planorbidae
Platyphysa prinsepii elongata (phyA)
Platyphysa prinsepii normalis (phyB)
Analysis of Variance (ANOVA)

- Tests the separation of more than two groups
 - Null hypothesis = The groups are the same
- Based on the variance in variables
 - One continuous variable and one or more categorical variables
 - 2-way and multiway also test the interaction of variables
- Null hypothesis is rejected when $F_{\text{calc}} > F_{\text{table}}$
- Post-hoc Tukey’s test (if significant) determines how groups are related
- Accomplished using R
- This study attempts to differentiate localities based on the characteristics of their gastropod fauna
 - Ratio data = Morphology changes
 - Raw data = Specimen size changes
Tricula sankeyi

$F_{4,67} = 3.94, p = 0.0063^*$

$F_{4,67} = 1.06, p = 0.3819$

* Significant at $\alpha = 0.05$

InS0126 Pijdura

InS0657 Takli

InS0762 Kalmeshwar

InS1186 Butera

InS1500 Sindhi

Scale = 1 mm
Lymnaea pokhariensis

- **F**$_{4,53}$ = 13.8, \(p = <0.0001^* \)

- **F**$_{4,53}$ = 1.06, \(p = 0.3851 \)

* Significant at \(\alpha = 0.05 \)

Images:

- InS0182 Pijdura
- InS0261 Takli
- InS0944 Kalmeshwar
- InS1292 Butera
- InS1501b Sindhi

Scale = 1 mm
Platyphysa prinsepii normalis

$X^2_3 = 28.2, \quad p = <0.0001^*$

$F_{4, 48} = 10.4, \quad p = <0.0001^*$

* Significant at $\alpha = 0.05$
Subulina subcylindracea

$F_{3,37} = 2.75, p = 0.0567$

$F_{3,37} = 0.320, p = 0.8111$

* Significant at $\alpha = 0.05$
Valvata unicarinifera

F$_{2, 45}$ = 4.49, p = 0.0167*

F$_{2, 45}$ = 0.712, p = 0.4959

* Significant at $\alpha = 0.05$
Bellamya normalis

$\chi^2_{4} = 47.9, \quad p = <0.0001^*$

$F_{4,62} = 9.91, \quad p = <0.0001^*$

* Significant at $\alpha = 0.05$
Chi2 Tests

- Tests the separation of groups based on count data
 - Null hypothesis = The groups are the same
- Number of items of each group compared to the expected
 - The expected is the average based on the total number of items
- Null hypothesis is rejected when $X^2_{\text{calc}} > X^2_{\text{table}}$
- Accomplished using Microsoft Excel
- This study attempts to differentiate localities based on the diversity and abundance of gastropod fauna
Diversity

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pijdura</td>
<td>9</td>
</tr>
<tr>
<td>Takli</td>
<td>14</td>
</tr>
<tr>
<td>Kalmeshwar</td>
<td>14</td>
</tr>
<tr>
<td>Butera</td>
<td>14</td>
</tr>
<tr>
<td>Sindhi</td>
<td>8</td>
</tr>
</tbody>
</table>

Change in diversity not significant

\[\chi^2_4 = 5.45 \]

Abundance

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pijdura</td>
<td>110</td>
</tr>
<tr>
<td>Takli</td>
<td>192</td>
</tr>
<tr>
<td>Kalmeshwar</td>
<td>225</td>
</tr>
<tr>
<td>Butera</td>
<td>114</td>
</tr>
<tr>
<td>Sindhi</td>
<td>25^</td>
</tr>
</tbody>
</table>

Change in abundance significant

\[\chi^2_4 = 486.3^* \]
\[\chi^2_3 = 148.5^* - \text{Sindhi removed} \]

[^ Small Amount of Material

* Significant at \(\alpha = 0.05 \)
Conclusions

Statistics can provide a quantitative backbone to paleontological studies to bolster observational results.

Tests can support taxonomic studies.

- Discriminant analysis differentiated closely related unionoid species of the Hell Creek Fm.
- Cluster analysis identified 16 different morphotypes in the Deccan Trap snails (4 families, 6 genera modified; 1 genus, 5 species, 4 subspecies new).

Tests can identify patterns in diversity and morphologic change.

- ANOVA identified that overall the size of Deccan Trap snails changed but not their morphology.
- The Chi2 test showed a change in snail abundance over the Deccan Trap sequence but no change in diversity.
Acknowledgements

- University of North Dakota
- Dr. Joseph Hartman
- Department of Energy
- Energy and Environmental Research Center
- Dr. Henning Scholz
- Geological Survey of India
- Dr. Dhananjay Mohabey
- Dr. Sunil Bajpai
- Dr. Ritu Sharma
Questions?